TANKENQI.cn

May 27, 2024

Bigtable —— 简介

BigData4.8 min to read

1 Bigtable概览

​ Cloud Bigtable 是稀疏填充的表,可以扩展到数十亿行和数千列,可让您存储 TB 级甚至是 PB 级的数据。每行中都会有一个被编入索引的值;这个值称为行键。Bigtable 非常适合以低延迟存储大量单键数据。它支持以低延迟方式实现高读写吞吐量,是 MapReduce 操作的理想数据源。

​ Bigtable 通过多个客户端库公开给应用,包括适用于 Java 的 Apache HBase 库的受支持扩展程序。因此,它可与开源大数据软件的现有 Apache 生态系统集成在一起。

​ 与自行管理的 HBase 安装相比,Bigtable 强大的后端服务器具有多项关键优势:

2 适合的场景

​ Bigtable 非常适合需要高吞吐量和可伸缩性键值对数据的应用,其中每个值通常不超过 10 MB。Bigtable 也擅长用作批量 MapReduce 操作、流处理/分析和机器学习应用的存储引擎。

​ 您可以使用 Bigtable 来存储和查询以下所有类型的数据:

3 Bigtable存储模型

​ Bigtable 将数据存储在扩缩能力极强的表中,其中每个表都是有序的键值对映射。该表由行(通常每行描述一个实体)和列(包含每行的各个值)组成。每一行都通过一个行键编入索引,而彼此相关的列通常会被划分到一个列族中。每一列由列族和列限定符(即列族中的唯一名称)的组合来标识。

​ 每个行/列交集可以包含多个单元格。每个单元格包含相应行和列的带时间戳的唯一版本数据。在列中存储多个单元格可提供相应行和列的已存储数据如何随时间的推移而变化的记录。Bigtable 表属于稀疏表;如果特定行中未使用某列,则该列就不会占用任何空间。

Bigtable 存储模型图表

此图中有几点需要注意:

4 Bigtable架构

下面显示了Bigtable整体架构的简化版本:

Bigtable 的整体架构。

如图所示,所有客户端请求都是先经过前端服务器,然后再发送到 Bigtable 节点。(在原始 Bigtable 白皮书中,这些节点被称为“片服务器”。)节点以 Bigtable 集群的形式组织,而后者属于 Bigtable 实例(集群的容器)。

☆ 注意:该图显示的是单集群实例。您还可以添加集群来复制数据,从而提高数据可用性和耐用性。

集群中的每个节点会处理对该集群的一部分请求。通过向集群添加节点,不但可以增加集群能够同时处理的并发请求数量,添加节点还会提高集群的最大吞吐量。如果您通过添加其他集群启用复制功能,还可以将不同类型的流量发送到不同的集群。然后,如果一个集群不再可用,您可以故障切换到另一个集群。

Bigtable 表被分成多个连续的行块(称为片),旨在帮助平衡查询工作负载。(片类似于 HBase 区域。)片以 SSTable 格式存储在 Google 的文件系统 Colossus 上。SSTable 提供了一种持久、有序且不可变的键值对映射,其中键和值都可以是任意的字节字符串。每个片都与特定的 Bigtable 节点相关联。除了 SSTable 文件之外,所有写入内容都会在获得 Bigtable 确认后立即存储在 Colossus 的共享日志中,从而提高了持久性。

重要的是,数据永远不会存储到 Bigtable 节点本身;每个节点都有指向 Colossus 中所存储的一组片的指针。因此:

如需详细了解如何使用这些基本组件,请参阅实例、集群和节点

5 负载平衡

​ 每个 Bigtable 区域都是由一个主实例进程管理,该进程可使集群内的工作负载和数据量达到平衡。此进程会将较繁忙/较大的片拆分成两半,而将较少访问/较小的片合并在一起,并根据需要在各节点之间重新分配这些片。如果某个片遇到流量高峰,Bigtable 会先将该片拆分成两部分,然后再将其中一个新片移至另一个节点。Bigtable 可自动管理拆分、合并和再平衡操作,从而节省了手动管理片的工作量。了解性能部分详细介绍了此过程。

​ 为了使 Bigtable 达到最佳写入性能,请尽可能均匀地在各节点间分配写入操作,这一点非常重要。实现这一目标的一种方法是按不可预测的顺序使用行键。例如,用户名在整个字母表中的分布往往是大致均匀的,因此将用户名包含在行键的开头位置通常会使写入操作得到均匀分布。

​ 同时,对相关行进行分组以使它们彼此相邻也很有用,这可让您更高效地同时读取多个行。例如,如果您要存储一段时间内不同类型的天气数据,您可以在行键中依次添加收集了这些数据的位置和时间戳(例如 WashingtonDC#201803061617)。这种类型的行键会将来自一个位置的所有数据组织成连续范围的行。对于其他位置,所属的行将以不同的标识符开头;如果有多个位置都在以相同速率收集数据,那么写入操作仍然会均匀分布到各片之中。

​ 如需详细了解如何为您的数据选择合适的行键,请参阅选择行键

6 受支持的数据类型

​ 在大多数情况下,Bigtable 会将所有数据视为原始字节字符串。Bigtable 只有在执行增量操作时才会尝试确定类型,在这种情况下,目标必须是编码为 8 字节 big-endian 值的 64 位整数。

7 内存和磁盘使用率

以下部分介绍了几种 Bigtable 组件对实例的内存和磁盘使用率的影响。

​ 未在 Bigtable 行中使用的列不会占用该行中的任何空间。每一行实质上都是键/值对条目的集合,其中键由列族、列限定符和时间戳组成。如果某行不包含特定列的值,则说明键/值对条目不存在。

​ 列限定符会占用行的空间,因为行中使用的每个列限定符会存储在该行中。因此,将列限定符用作数据通常是有效的做法。

​ Bigtable 会定期重写您的表以移除已删除的条目,并重新整理数据以提高读写操作的效率。我们将这一过程称为压缩。对于压缩,没有相关的配置设置,因为 Bigtable 会自动压缩您的数据。

​ 行更改会占用额外的存储空间,因为 Bigtable 按顺序存储更改且仅定期进行压缩。对表进行压缩时,Bigtable 会移除不再需要的值。如果您更新某单元格中的值,则原始值和新值都会在磁盘上存储一段时间,直到数据得到压缩为止。

​ 删除也会占用额外的存储空间(至少短期内是这样),因为删除实际上是一种特殊类型的更改。在表得到压缩之前,删除将占用额外的存储空间而不会释放空间。

​ Bigtable 采用智能算法自动压缩您的数据。您无法为表配置压缩设置。但是,了解如何存储数据以便高效地进行压缩是很有用的:

8 数据耐用性

​ 当您使用 Bigtable 时,您的数据将使用 Google 数据中心的存储设备存储在 Colossus 上,这是 Google 提供的一个极为耐用的内部文件系统。您无需运行 HDFS 集群或任何其他文件系统即可使用 Bigtable。在后台,Google 利用专有的存储方法来实现数据耐用性,并高于标准 HDFS 三向复制功能所提供的耐用性。

​ 使用复制功能时,耐用性会进一步提高。Bigtable 会在您选择的位置为复制实例的每个集群保留一份单独的数据副本。

9 一致性模型

​ 单集群 Bigtable 实例可提供强一致性。默认情况下,具有多个集群的实例提供最终一致性,但对于某些用例,这些实例可以配置为提供读己所写一致性或强一致性,具体取决于工作负载和应用配置文件设置。

10 安全性

​ 对 Bigtable 表的访问权限通过您的 Google Cloud 项目以及您分配给用户的 Identity and Access Management (IAM) 角色控制。例如,您可以分配 IAM 角色,针对性地防止特定用户读取表、对表执行写入操作或创建新实例。如果某人无权访问您的项目,或者没有适当 Bigtable 权限的 IAM 角色,则无法访问您的任何表。

​ 您可以管理项目级层、实例级层和表级层的安全性。 Bigtable 不支持行级、列级或单元级的安全限制。

11 加密

​ 默认情况下,存储在 Google Cloud 中的所有数据(包括 Bigtable 表中的数据)都会使用我们用于自己的加密数据的同一强化密钥管理系统进行静态加密

​ 如果您希望更好地控制用于加密 Bigtable 静态数据的密钥,可以使用客户管理的加密密钥 (CMEK)

12 备份

​ 借助 Bigtable 备份,您可以保存表架构和数据的副本,并可在以后通过该副本将内容恢复到一个新表中。使用备份及备份副本,无论源表位于何处,您都可以在包含 Bigtable 实例的任何区域或项目中将内容恢复到一个新表中。

13 变更数据捕获

​ Bigtable 以变更数据流的形式提供变更数据捕获 (CDC)。借助变更数据流,您可以在数据变更发生时捕获数据更改并将其流式传输到表中。您可以使用 Dataflow 等服务读取变更数据流,以支持数据分析、审核、归档要求和触发下游应用逻辑等使用场景。如需了解详情,请参阅变更数据流概览

14 使用应用配置文件来请求路由

通过应用配置文件路由政策,您可以控制哪些集群将处理从应用传入的请求。路由政策包括如下选项: